Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Datacenters today waste CPU and memory, as resources demanded by applications often fail to match the resources available on machines. This leads to stranded resources because one resource that runs out prevents placing additional applications that could consume the other resources. Unusable stranded resources result in reduced utilization of servers, and wasted money and energy. Quicksand is a new framework and runtime system that unstrands resources by providing developers with familiar, high-level abstractions (e.g., data structures, batch computing). Internally Quicksand decomposes them into resource proclets, granular units that each primarily consume resources of one type. Inspired by recent granular programming models, Quicksand decouples consumption of resources as much as possible. It splits, merges, and migrates resource proclets in milliseconds, so it can use resources on any machine, even if available only briefly. Evaluation of our prototype with four applications shows that Quicksand uses stranded resources effectively; that Quicksand reacts to changing resource availability and demand within milliseconds, increasing utilization; and that porting applications to Quicksand requires moderate effort.more » « lessFree, publicly-accessible full text available April 28, 2026
-
Maintaining low tail latency is critical for the efficiency and performance of large-scale datacenter systems. Software bugs that cause tail latency problems, however, are notoriously difficult to debug. We present LDB, a new latency profiling tool that aims to overcome this challenge by precisely identifying the specific functions that are responsible for tail latency anomalies. LDB observes the latency of all functions in a running program. It uses a novel, software-only technique called stack sampling, where a busy-spinning stack scanner thread polls lightweight metadata recorded in the call stack, shifting tracing costs away from program threads. In addition, LDB uses event tagging to record requests, inter-thread synchronization, and context switching. This can be used, for example, to generate per-request timelines and to find the root cause of complex tail latency problems such as lock contention in multi-threaded programs. We evaluate LDB with three datacenter applications, finding latency problems in each. Our results further show that LDB produces actionable insights, has low overhead, and can rapidly analyze recordings, making it feasible to use in production settings.more » « less
-
Modern datacenter applications are concurrent, so they require synchronization to control access to shared data. Requests can contend for different combinations of locks, depending on application and request state. In this paper, we show that locks, especially blocking synchronization, can squander throughput and harm tail latency, even when the CPU is underutilized. Moreover, the presence of a large number of contention points, and the unpredictability in knowing which locks a request will require, make it difficult to prevent contention through overload control using traditional signals such as queueing delay and CPU utilization. We present Protego, a system that resolves these problems with two key ideas. First, it contributes a new admission control strategy that prevents compute congestion in the presence of lock contention. The key idea is to use marginal improvements in observed throughput, rather than CPU load or latency measurements, within a credit-based admission control algorithm that regulates the rate of incoming requests to a server. Second, it introduces a new latency-aware synchronization abstraction called Active Synchronization Queue Management (ASQM) that allows applications to abort requests if delays exceed latency objectives. We apply Protego to two real-world applications, Lucene and Memcached, and show that it achieves up to 3.3x more goodput and 12.2x lower 99th percentile latency than the state-of-the-art overload control systems while avoiding congestion collapse.more » « less
-
Today's clouds are inefficient: their utilization of resources like CPUs, GPUs, memory, and storage is low. This inefficiency occurs because applications consume resources at variable rates and ratios, while clouds offer resources at fixed rates and ratios. This mismatch of offering and consumption styles prevents fully realizing the utility computing vision. We advocate for fungible applications, that is, applications that can distribute, scale, and migrate their consumption of different resources independently while fitting their availability across different servers (e.g., memory at one server, CPU at another). Our goal is to make use of resources even if they are transiently available on a server for only a few milliseconds. We are developing a framework called Quicksand for building such applications and unleashing the utility computing vision. Initial results using Quicksand to implement a DNN training pipeline are promising: Quicksand saturates resources that are imbalanced across machines or rapidly shift in quantity.more » « less
-
Datacenters waste significant compute and memory resources today because they lack resource fungibility: the ability to reassign resources quickly and without disruption. We propose logical processes, a new abstraction that splits the classic UNIX process into units of state called proclets. Proclets can be migrated quickly within datacenter racks, to provide fungibility and adapt to the memory and compute resource needs of the moment. We prototype logical processes in Nu, and use it to build three different applications: a social network application, a MapReduce system, and a scalable key-value store. We evaluate Nu with 32 servers. Our evaluation shows that Nu achieves high efficiency and fungibility: it migrates proclets in ≈100μs; under intense resource pressure, migration causes small disruptions to tail latency—the 99.9th percentile remains below or around 1ms—for a duration of 0.54–2.1s, or a modest disruption to throughput (<6%) for a duration of 24–37ms, depending on the application.more » « less
-
Modern datacenter applications are concurrent, so they require synchronization to control access to shared data. Requests can contend for different combinations of locks, depending on application and request state. In this paper, we show that locks, especially blocking synchronization, can squander throughput and harm tail latency, even when the CPU is underutilized. Moreover, the presence of a large number of contention points, and the unpredictability in knowing which locks a request will require, make it difficult to prevent contention through overload control using traditional signals such as queueing delay and CPU utilization. We present Protego, a system that resolves these problems with two key ideas. First, it contributes a new admission control strategy that prevents compute congestion in the presence of lock contention. The key idea is to use marginal improvements in observed throughput, rather than CPU load or latency measurements, within a credit-based admission control algorithm that regulates the rate of incoming requests to a server. Second, it introduces a new latency-aware synchronization abstraction called Active Synchronization Queue Management (ASQM) that allows applications to abort requests if delays exceed latency objectives. We apply Protego to two real-world applications, Lucene and Memcached, and show that it achieves up to 3.3x more goodput and 12.2x lower 99th percentile latency than the state-of-the-art overload control systems while avoiding congestion collapse.more » « less
-
Balakrishnan, Mahesh; Ghobadi, Manya (Ed.)Modern datacenter applications are concurrent, so they require synchronization to control access to shared data. Requests can contend for different combinations of locks, depending on application and request state. In this paper, we show that locks, especially blocking synchronization, can squander throughput and harm tail latency, even when the CPU is underutilized. Moreover, the presence of a large number of contention points, and the unpredictability in knowing which locks a request will require, make it difficult to prevent contention through overload control using traditional signals such as queueing delay and CPU utilization. We present Protego, a system that resolves these problems with two key ideas. First, it contributes a new admission control strategy that prevents compute congestion in the presence of lock contention. The key idea is to use marginal improvements in observed throughput, rather than CPU load or latency measurements, within a credit-based admission control algorithm that regulates the rate of incoming requests to a server. Second, it introduces a new latency-aware synchronization abstraction called Active Synchronization Queue Management (ASQM) that allows applications to abort requests if delays exceed latency objectives. We apply Protego to two real-world applications, Lucene and Memcached, and show that it achieves up to 3.3x more goodput and 12.2x lower 99th percentile latency than the state-of-the-art overload control systems while avoiding congestion collapse.more » « less
An official website of the United States government

Full Text Available